差分信號差分傳輸是一種信號傳輸?shù)募夹g(shù),區(qū)別于傳統(tǒng)的一根信號線一根地線的做法,差分傳輸在這兩根線上都傳輸信號,這兩個信號的振幅相等,相位相反。在這兩根線上傳輸?shù)男盘柧褪遣罘中盘枴2罘中盘栍址Q差模信號,是相對共模信號而言的。 我們用一個方法對差分信號做一下比喻,差分信號就好比是蹺蹺板上的兩個人,當(dāng)一個人被蹺上去的時候,另一個人被蹺下來了 - 但是他們的平均位置是不變的。繼續(xù)蹺蹺板的類推,正值可以表示左邊的人比右邊的人高,而負(fù)值表示右邊的人比左邊的人高。0 表示兩個人都是同一水平。應(yīng)用到電學(xué)上,這兩個蹺蹺板用一對標(biāo)識為V+和V-的導(dǎo)線來表示。1 W/ v, {! d$ m5 a
特點8 D+ D% R8 C, K/ }; d% W
從嚴(yán)格意義上來講,所有電壓信號都是差分的,因為一個電壓只能是相對于另一個電壓而言的。在某些系統(tǒng)里,"系統(tǒng)地"被用作電壓基準(zhǔn)點。當(dāng)'地'當(dāng)作電壓測量基準(zhǔn)時,這種信號規(guī)劃被稱之為單端的。我們使用該術(shù)語是因為信號是用單個導(dǎo)體上的電壓來表示的。 另一方面,一個差分信號作用在兩個導(dǎo)體上。信號值是兩個導(dǎo)體間的電壓差。盡管不是非常必要,這兩個電壓的平均值還是會經(jīng)常保持一致。 可以想象,這兩個導(dǎo)體上被同時加入的一個相等的電壓,也就是所謂共模信號,對一個差分放大系統(tǒng)來說是沒有作用的,也就是說,盡管一個差分放大器的輸入有效信號幅度只需要幾毫伏,但它卻可以對一個高達幾伏特的共模信號無動于衷。這個指標(biāo)叫做差分放大器的共模抑制比(CMRR),一般的運算放大器可以達到90db以上,高精度運放甚至達到120db。因為干擾信號一般是以共模信號的形式存在,所以差分信號的應(yīng)用極大地提高了放大器系統(tǒng)的信噪比。
+ r" |1 \. s9 q, X” 優(yōu)點
0 B' t- I. ~* ~) ?: H* N1、抗干擾能力強。干擾噪聲一般會等值、同時的被加載到兩根信號線上,而其差值為0,即,噪聲對信號的邏輯意義不產(chǎn)生影響。
8 \: b0 ~1 A) z2、能有效抑制電磁干擾(EMI)。由于兩根線靠得很近且信號幅值相等,這兩根線與地線之間的耦合電磁場的幅值也相等,同時他們的信號極性相反,其電磁場將相互抵消。因此對外界的電磁干擾也小。" I0 p7 D+ v. T4 x
3、時序定位準(zhǔn)確。差分信號的接受端是兩根線上的信號幅值之差發(fā)生正負(fù)跳變的點,作為判斷邏輯0/1跳變的點的。而普通單端信號以閾值電壓作為信號邏輯0/1的跳變點,受閾值電壓與信號幅值電壓之比的影響較大,不適合低幅度的信號。
* a( _, c3 M! x2 R+ z” 缺點
- \' o& _8 K4 `0 i; t8 h若電路板的面積非常緊張,單端信號可以只有一根信號線,地線走地平面,而差分信號一定要走兩根等長、等寬、緊密靠近、且在同一層面的線。這樣的情況常常發(fā)生在芯片的管腳間距很小,以至于只能穿過一根走線的情況下。 ! ?9 Y0 z' G6 S, d. R
”時鐘數(shù)據(jù)恢復(fù)( CDR: clock data recovery)時鐘恢復(fù)作為高速串行通信必須具有的核心功能得到越來越廣泛的應(yīng)用,在以太網(wǎng)、PCI-Express、Aurora中都有時鐘恢復(fù)模塊。相對的,傳統(tǒng)的時鐘與數(shù)據(jù)同時傳輸?shù)牟⑿袀鬏敺绞綗o法達到1Gb/s以上帶寬。
$ J8 a2 E: J* _: K; c9 F- c * I0 P( D/ F! p* a$ W
簡單的來說,所謂時鐘恢復(fù)就是:根據(jù)參考時鐘,從數(shù)據(jù)信號把時鐘信號提取出來。相對應(yīng)的,在信道上只傳輸串行數(shù)據(jù),在信道上并沒有時鐘信號。數(shù)據(jù)接收端接收串行數(shù)據(jù)并進行時鐘恢復(fù)。5 ^ T$ M9 V2 S& ~" R
9 A1 i( ~0 |1 l' i4 Y y2 USERDES中,時鐘數(shù)據(jù)恢復(fù)的基礎(chǔ)
, w+ L) x. j, W b4 e1 k通常CDR協(xié)議運行在較高的數(shù)據(jù)速率和較長的傳送距離,因此帶來很大的設(shè)計挑戰(zhàn)。 在SERDES(Serializer-Deserializer)應(yīng)用中,顧名思義,CDR接收器必須從數(shù)據(jù)中恢復(fù)嵌入的時鐘。更準(zhǔn)確地說,是從數(shù)據(jù)信號的交換中獲取時鐘。 CDR發(fā)送器首先串行發(fā)送數(shù)據(jù),然后將數(shù)據(jù)轉(zhuǎn)換成8b/10b編碼方案。編碼處理獲得8位數(shù)據(jù)并將其轉(zhuǎn)換成10位符號。8b/10b編碼方式可以在數(shù)據(jù)線上傳送相等數(shù)目的0和1,從而減少碼間干擾,并提供足夠多的數(shù)據(jù)邊沿,以便接收器在收到的數(shù)據(jù)流上鎖定相位。發(fā)送器將系統(tǒng)時鐘倍頻至傳送比特率,并以該速率在TX差分對上發(fā)送8b/10b數(shù)據(jù)。 CDR接收器的任務(wù)首先是在RX差分位流上鎖定相位,然后接收器按照恢復(fù)的時鐘進行數(shù)據(jù)位對齊,接著用接收器的參考時鐘進行字對齊。最后,將數(shù)據(jù)進行8b/10b解碼,供系統(tǒng)使用。 在CDR系統(tǒng)中,發(fā)送和接收系統(tǒng)通常擁有完全獨立的系統(tǒng)時鐘。這兩個時鐘在一個特定的變化范圍內(nèi)非常關(guān)鍵,這個范圍大約是數(shù)百個PPM。& [% W) K: Z! Y3 O6 T
CDR電路與抖動
! `, T: p6 `# m! yCDR接口的主要設(shè)計挑戰(zhàn)是抖動,即實際數(shù)據(jù)傳送位置相對于所期望位置的偏移?偠秳(TJ)由確定性抖動和隨機抖動組成。大多數(shù)抖動是確定的,其分量包括碼間干擾、串?dāng)_、占空失真和周期抖動(例如來自開關(guān)電源的干擾)。而通常隨機抖動是半導(dǎo)體發(fā)熱問題的副產(chǎn)品,且很難預(yù)測。 傳送參考時鐘、傳送PLL、串化器和高速輸出緩沖器都對會傳送抖動造成影響。對于給定的比特周期或者數(shù)據(jù)眼,傳送抖動通常用單位間隔的百分比或UI(單位間隔)來說明。例如,.2 UI的傳送抖動表示抖動由比特周期的20%組成。對于傳送抖動而言,UI數(shù)值越低越好,因為它們代表較少的抖動。 同樣地,CDR接收器將指定在給定比特率時所能容忍的最大抖動量。典型的比特誤碼率(BET)標(biāo)準(zhǔn)是1e-12。接收抖動仍然用UI來指定。較大的UI表明接收器可以容忍更多的抖動。典型的接收器規(guī)格是.8 UI,這意味著80%的比特周期可以是噪聲,此時接收器將仍然能夠可靠地接收數(shù)據(jù)。抖動通常用統(tǒng)計鐘形分布來量化,該分布在其定點處有理想的邊沿位置。
X+ o; I% m6 W/ L' F信道均衡(Channel equalization)信道均衡(Channel equalization)是指為了提高衰落信道中的通信系統(tǒng)的傳輸性能而采取的一種抗衰落措施。它主要是為了消除或者是減弱寬帶通信時的多徑時延帶來的碼間串?dāng)_(ISI)問題。
, T) R: v# e6 j: P. O' Z4 Z其機理是對信道或整個傳輸系統(tǒng)特性進行補償,針對信道恒參或變參特性,數(shù)據(jù)速率大小不同,均衡有多種結(jié)構(gòu)方式。大體上分為兩大類:線性與非線性均衡。線性均衡器和非線性均衡器的主要差別在于自適應(yīng)均衡器的輸出被用于反饋控制的方法。對于帶通信道的均衡較為困難,一般都是待接收端解調(diào)后在基帶進行均衡,因此基帶均衡技術(shù)有廣泛應(yīng)用。 在實際中一般是加入自適應(yīng)濾波器來實現(xiàn)信道均衡。使用濾波器來補償失真的脈沖,判決器得到的解調(diào)輸出樣本,是經(jīng)過均衡器修正過的或者清除了碼間干擾之后的樣本。自適應(yīng)均衡器直接從傳輸?shù)膶嶋H數(shù)字信號中根據(jù)某種算法不斷調(diào)整增益,因而能適應(yīng)信道的隨機變化,使均衡器總是保持最佳的狀態(tài),從而有更好的失真補償性能。 + [2 Y* j6 I x7 J
|